Journal of Health and Medical Sciences
ISSN 2622-7258
Published: 22 June 2023
Comparison of the Effectiveness in Nasopharyngeal, Throat, Saliva, and Nasal Swab Sample Media of Detection SARS-Cov-2 using RT-PCR
Raka Rajendra, Syahrul Tuba, Syed Azhar Syed Sulaiman
Indonesia Defense University (Indonesia), University Sains Malaysia (Malaysia)
Download Full-Text Pdf
10.31014/aior.1994.06.02.270
Pages: 72-78
Keywords: SARS-CoV-2, RT-PCR, Covid-19
Abstract
To evaluate effectivity results among Nasopharyngeal, Throat, Saliva, and Nasal Swab Sample Media for Detection of SARS-Cov-2 virus using RT-PCR. SARS-CoV-2 is a coronavirus microorganism found in humans. A known viral infection causes the covid-19 disease to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Covid-19 has confused the public because of the different places where the samples were taken. Sampling was taken from the Nasopharynx, Throat, Saliva, and nasal Swab. This study used mini-review journals from several leading search engine journals such as PubMed, Elsevier, Jama Network, BMJ, Cochrane, Wiley, medRXiv, Lancet, and others, as well as from government websites such as WHO selected between 2020 and 2021 in the English language. Each sampling place has its advantages and disadvantages. Any place that is used as the gold standard is the nasal swab and nasopharyngeal. This paper attempts to compare the efficacy of four sample media to find the best method for detecting the SARS-CoV-2 virus. It is hoped that repeating this paper can make us aware of every method that we can use to detect the SARS-CoV-2 virus and reduce the spread of this virus, which is increasingly widespread.
References
Afzal, A. (2020). Molecular diagnostic technologies for COVID-19: Limitations and challenges. In Journal of Advanced Research (Vol. 26, p. 149‑159). Elsevier B.V. https://doi.org/10.1016/j.jare.2020.08.002
Astuti, I., & Ysrafil. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 14(4), 407‑412. https://doi.org/10.1016/j.dsx.2020.04.020
Berenger, B. M., Fonseca, K., Schneider, A. R., Hu, J., & Zelyas, N. (2020). Sensitivity of nasopharyngeal, nasal and throat swab for the detection of SARS-CoV-2. In medRxiv. medRxiv. https://doi.org/10.1101/2020.05.05.20084889
Chan, J. F. W., Yuan, S., Kok, K. H., To, K. K. W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C. Y., Poon, R. W. S., Tsoi, H. W., Lo, S. K. F., Chan, K. H., Poon, V. K. M., Chan, W. M., Ip, J. D., Cai, J. P., Cheng, V. C. C., Chen, H., … Yuen, K. Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet, 395(10223), 514‑523. https://doi.org/10.1016/S0140-6736(20)30154-9
Deepak, S. A., Kottapalli, K. R., Rakwal, R., Oros, G., Rangappa, K. S., Iwahashi, H., Masuo, Y., & Agrawal, G. K. (2007). Real-Time PCR: Revolutionizing Detection and Expression Analysis of Genes. In Current Genomics (Vol. 8).
Dogan, O. A., Kose, B., Agaoglu, N. B., Yildiz, J., Alkurt, G., Demirkol, Y. K., Irvem, A., Doganay, G. D., & Doğanay, L. (2020). Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? Comparing saliva with oro-nasopharyngeal swabs. In medRxiv. medRxiv. https://doi.org/10.1101/2020.07.26.20158618
la Marca, A., Capuzzo, M., Paglia, T., Roli, L., Trenti, T., & Nelson, S. M. (2020). Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. In Reproductive BioMedicine Online (Vol. 41, Numéro 3, p. 483‑499). Elsevier Ltd. https://doi.org/10.1016/j.rbmo.2020.06.001
Matheson, N. J., & Lehner, P. J. (2020). How does SARS-CoV-2 cause COVID-19? Science, 369(6503), 510. https://doi.org/10.1126/science.abc6156
Medeiros da Silva, R. C., Nogueira Marinho, L. C., de Araújo Silva, D. N., Costa de Lima, K., Pirih, F. Q., & Luz de Aquino Martins, A. R. (2020). Saliva as a possible tool for the SARS-CoV-2 detection: A review. In Travel Medicine and Infectious Disease (Vol. 38). Elsevier Inc. https://doi.org/10.1016/j.tmaid.2020.101920
Nasiri, K., & Dimitrova, A. (2021). Comparing saliva and nasopharyngeal swab specimens in the detection of COVID-19: A systematic review and meta-analysis. In Journal of Dental Sciences. Association for Dental Sciences of the Republic of China. https://doi.org/10.1016/j.jds.2021.01.010
Péré, H., Péré, H., Péré, H., Podglajen, I., Podglajen, I., Wack, M., Wack, M., Flamarion, E., Mirault, T., Mirault, T., Goudot, G., Goudot, G., Hauw-Berlemont, C., Le, L., Le, L., Caudron, E., Caudron, E., Carrabin, S., Rodary, J., … Veyer, D. (2020). Nasal swab sampling for SARS-CoV-2: A convenient alternative in times of nasopharyngeal swab shortage. In Journal of Clinical Microbiology (Vol. 58, Numéro 6). American Society for Microbiology. https://doi.org/10.1128/JCM.00721-20
Perera, R. A. P. M., Tso, E., Tsang, O. T. Y., Tsang, D. N. C., Fung, K., Leung, Y. W. Y., Chin, A. W. H., Chu, D. K. W., Cheng, S. M. S., Poon, L. L. M., Chuang, V. W. M., & Peiris, M. (2020). SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild Coronavirus disease. Emerging Infectious Diseases, 26(11), 2701‑2704. https://doi.org/10.3201/eid2611.203219
Pondaven-Letourmy, S., Alvin, F., Boumghit, Y., & Simon, F. (2020). How to perform a nasopharyngeal swab in adults and children in the COVID-19 era. European Annals of Otorhinolaryngology, Head and Neck Diseases, 137(4), 325‑327. https://doi.org/10.1016/j.anorl.2020.06.001
Rabaan, A. A., Tirupathi, R., Sule, A. A., Aldali, J., Mutair, A. al, Alhumaid, S., Muzaheed, Gupta, N., Koritala, T., Adhikari, R., Bilal, M., Dhawan, M., Tiwari, R., Mitra, S., Emran, T. bin, & Dhama, K. (2021). Viral Dynamics and Real-Time RT-PCR Ct Values Correlation with Disease Severity in COVID-19. Diagnostics, 11(6), 1091. https://doi.org/10.3390/diagnostics11061091
Ranoa, D. R. E., Holland, R. L., Alnaji, F. G., Green, K. J., Wang, L., Brooke, C. B., Burke, M. D., Fan, T. M., & Hergenrother, P. J. (2020). Saliva-based molecular testing for SARS-CoV-2 that bypasses RNA extraction. In bioRxiv. bioRxiv. https://doi.org/10.1101/2020.06.18.159434
To, K. K.-W., Tsang, O. T.-Y., Yip, C. C.-Y., Chan, K.-H., Wu, T.-C., Chan, J. M.-C., Leung, W.-S., Chik, T. S.-H., Choi, C. Y.-C., Kandamby, D. H., Lung, D. C., Tam, A. R., Poon, R. W.-S., Fung, A. Y.-F., Hung, I. F.-N., Cheng, V. C.-C., Chan, J. F.-W., & Yuen, K.-Y. (2020). Consistent Detection of 2019 Novel Coronavirus in Saliva. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 71(15), 841‑843. https://doi.org/10.1093/cid/ciaa149
Torres, I., Albert, E., & Navarro, D. (2020). Pooling of nasopharyngeal swab specimens for SARS-CoV-2 detection by RT-PCR. In medRxiv. medRxiv. https://doi.org/10.1101/2020.04.22.20075598
Tsujimoto, Y., Terada, J., Kimura, M., Moriya, A., Motohashi, A., Izumi, S., Kawajiri, K., Hakkaku, K., Morishita, M., Saito, S., Takumida, H., Watanabe, H., Tsukada, A., Morita, C., Yamaguchi, Y., Katsuno, T., Kusaba, Y., Sakamoto, K., Hashimoto, M., … Sugiyama, H. (2021). Diagnostic accuracy of nasopharyngeal swab, nasal swab and saliva swab samples for the detection of SARS-CoV-2 using RT-PCR. Infectious Diseases. https://doi.org/10.1080/23744235.2021.1903550
van Kampen, J. J. A., van de Vijver, D. A. M. C., Fraaij, P. L. A., Haagmans, B. L., Lamers, M. M., Okba, N., van den Akker, J. P. C., Endeman, H., Gommers, D. A. M. P. J., Cornelissen, J. J., Hoek, R. A. S., van der Eerden, M. M., Hesselink, D. A., Metselaar, H. J., Verbon, A., de Steenwinkel, J. E. M., Aron, G. I., van Gorp, E. C. M., van Boheemen, S., … van der Eijk, A. A. (2020). Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. medRxiv, 2020.06.08.20125310. https://doi.org/10.1101/2020.06.08.20125310
Wikramaratna, P. S., Paton, R. S., Ghafari, M., & Lourenço, J. (2020). Estimating the false-negative test probability of SARS-CoV-2 by RT-PCR. In medRxiv. medRxiv. https://doi.org/10.1101/2020.04.05.20053355
Xiao, A. T., Tong, Y. X., Gao, C., Zhu, L., Zhang, Y. J., & Zhang, S. (2020). Dynamic profile of RT-PCR findings from 301 COVID-19 patients in Wuhan, China: A descriptive study. Journal of Clinical Virology, 127. https://doi.org/10.1016/j.jcv.2020.104346
Yamayoshi, S., Sakai-Tagawa, Y., Koga, M., Akasaka, O., Nakachi, I., Koh, H., Maeda, K., Adachi, E., Saito, M., Nagai, H., Ikeuchi, K., Ogura, T., Baba, R., Fujita, K., Fukui, T., Ito, F., Hattori, S. I., Yamamoto, K., Nakamoto, T., … Kawaoka, Y. (2020). Comparison of Rapid Antigen Tests for COVID-19. Viruses, 12(12). https://doi.org/10.3390/v12121420
Young, B. E., Ong, S. W. X., Ng, L. F. P., Anderson, D. E., Chia, W. N., Chia, P. Y., Ang, L. W., Mak, T.-M., Kalimuddin, S., Chai, L. Y. A., Pada, S., Tan, S. Y., Sun, L., Parthasarathy, P., Fong, S.-W., Chan, Y.-H., Tan, C. W., Lee, B., Rötzschke, O., … Team, S. 2019 N. C. O. R. (2020). Viral Dynamics and Immune Correlates of Coronavirus Disease 2019 (COVID-19) Severity. Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciaa1280
Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H.-L., Peiris, M., & Wu, J. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. The New England Journal of Medicine, 382(12), 1177‑1179. https://doi.org/10.1056/NEJMc2001737