Engineering and Technology Quarterly Reviews
ISSN 2622-9374
Published: 30 January 2021
Uniformly Valid First Approximation Shell Theory of Hybrid Anisotropic Materials
Samuel W Chung, Hyun-ho Ju
University of Utah (USA), Dong Guk University (South Korea)
Download Full-Text Pdf
10.5281/zenodo.4481067
Pages: 1-9
Keywords: Shell Theory, Hybrid Anistropic Materials
Abstract
The theories in this article implies unique physical characteristics and formulated the governing equations. A uniformly valid shell theory which includes all the terms present in each of the asymptotic shell theories. The first approximation theories derived in this article represent the simplest possible shell theories for the corresponding length scales considered. Although twenty-one elastic coefficients are present in the original formulation of the problem, only six are appear in the first approximation theories.
References
LOVE, A. E. H., "A treatise on the mathematical theory of elasticity", Dover Edition, New York.
REISSNER, E., "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. 12, Nos.A69-A77,(1945).
GOLDENVEISER, A. L., "Theory of elastic thin shells", Pergamon
REISSNER, E., "On some problems in shell theory", Proc. 1st Symposium on Naval Structural Mechanics (Stanford University), (1958).
REISSNER, E. and STAVSKY, Y., "Bending and stretching of certain types of heterogeneous aelotropic elastic plates", J. Appl. Mech., Paper No. 61-APM-21,(1961).
DONG, R. G. and DONG, S. B., "Analysis of slightly anisotropic shells", AIAA Journal, 1, No.11, November,(1963).
WIDERA, 0. E. and CHUNG, S. W., "A theory for non-homogeneous anisotropic cylindrical shells", J. COMPOSITE MATERIALS, 6, January, (1972).
GOLDENVEISER, A. L., "Methods for justifying and refining the theory of shells", P.M.M. 32, 684 (1968).
JOHNSON, M. W. and REISSNER, E., "On the foundations of the theory thin elastic shells", J. Math. Phys. 37, 371 (1959).
REISS, E. L., "A theory for the small rotationally symmetric deform¬ations of cylindrical shells". Communications on Pure and Applied Mathematics XIII, 531 (1960).
WILCOX, C. H., "Asymptotic solutions of differential equations and their applications", John-Wiley and.Sons, Inc..
VAN DYKE, M., "Pertubation methods in fluid mechanics", Academic Press, (1964).
DYM, C. L. and HOFF, N. J., "Pertubation-solutions for the buckling problem of axially compressed thin cylindrical shells", AFO SR-66--1755, SUDAAR No.282, Stanford University.
BERT, C. W., "Structural theory for laminated anisotropic elastic shells", J. COMPOSITE MATERIALS 1 , 414 (1967).
VLASOV, V. Z., "General theory of shells and its applications in engineering", NASA TT F-99, National Tech. Information Service.
CHUNG, S.W., “A Comparison of Membrane Shell Theories of Hybrid Anisotropic Materials”, European Journal of Engineering and Technology, Volume 4, No.5,2016 http://www.idpublications.org/ejet-vol-4-no-5-2016/
Chung, S.W., Hong, S.G. and Ju, G.S.,
“Details of Semi-Membrane Shell Theory of Hybrid Anisotropic Materials” International Journal of Composite Materials 2018.8(3):47-56,
Chung, S.W., Hong, S.G., Ju, G.S.
“Pure Membrane, Pseudo Membrane, and Semi Membrane Shell Theories of Hybrid Anisotropic Materials”, Journal of Material Science and Engineering A 8 (5-6) (2018) 121-135,
Chung, S.W., Hong, S.G., Ju, G.S., “Semi-Membrane and Effective Length Theory of hybrid Anisotropic Materials“,
International Journal of Composite Materials. volume 7 (3), 2017: Contact Us: editor@sapub.org , ID:110900221
Chung, S. W.1, Hong S. G.2, Ju G. S.3,
“Applications of Pure Membrane, Pseudo Membrane, and Semi Membrane Shell Theories of Hybrid Anisotropic Materials”, International Journal of Composite Materials p-ISSN: 2166-479X e-ISSN: 2166-4919, 2018; 8(4): 73-90 doi:10.5923/j.cmaterials.20180804.01
Chung S. W.1 , Hong, S. G.2, Ju G. S.3,, “A Spherical Shell Theory of Hybrid Anisotropic Materials”. International Journal of Composite Materials p-ISSN: 2166-479X e-ISSN: 2166-4919 2018; 8(4): 97-104, ID:110900262, doi:10.5923/j.cmaterials.20180804.03