Capsule Dosage Forms Containing Natural Antioxidant Microcapsules of Cantigi Extract
top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Journal of Health and Medical Sciences

ISSN 2622-7258

Screen Shot 2018-08-12 at 1.24.09 AM.png
Screen Shot 2018-08-12 at 1.24.02 AM.png
Screen Shot 2018-08-12 at 1.23.57 AM.png
Screen Shot 2018-08-12 at 1.23.52 AM.png
crossref
doi
open access

Published: 07 May 2024

Capsule Dosage Forms Containing Natural Antioxidant Microcapsules of Cantigi Extract

Kosasih Kosasih, Fitri Weningtyas

Universitas Pancasila, Indonesia

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.31014/aior.1994.07.02.317

Pages: 41-50

Keywords: Cantigi Extract, Capsule Dosage Forms, Microencapsulations, Release Profiles

Abstract

Microencapsulation technology in product development of the food, beverage, and health sectors may provide innovative products with better stability, functionality, and prolonged releases. This study aims to formulate capsule dosage forms containing natural antioxidant microcapsules of Cantigi extract and analyze slow-release profiles. Three microcapsule formulations (F1, F2, and F3) were made by solvent evaporation method using ethyl cellulose coating and characterized for color, odor, particle size, shape, recovery, moisture content, encapsulation efficiency, drug loading, density, and antioxidant activities. Then, three capsule dosage forms (FI, FII, and FIII) of microcapsules of the most potent antioxidant activity, microcrystalline cellulose, and colloidal silicon dioxide. The results showed that the most potent microcapsules were F1, while the most potent capsule dosage forms were FIII. FIII provides the slowest release compared with FI and FII. By analyzing the kinetics of FIII using zero-order, first-order, Higuchi, and Kosmeyer-Peppas models, the release profile of FIII is the best fit with the first-order model kinetics, consistent with a previous study. Moreover, all capsule dosage forms have a biphasic slow-release profile for 60 minutes. The conclusion is that this study can prepare hard-gelatin capsule dosage forms containing natural antioxidant microcapsules of cantigi extract with first-order and biphasic slow-release profiles.

References

  1. Abbaspoor, S., Ashrafi, A., & Salehi, M. (2018). Synthesis and characterization of ethyl cellulose micro/nanocapsules using solvent evaporation method. Colloid and Polymer Science, 296, 1509–1514. https://doi.org/10.1007/s00396-018-4371-2.

  2. Ahangaran, F. (2022). Chapter 18 - Microencapsulation: Solvent evaporation. In: Sefat, F., Farzi, G., & Mozafari, M., eds. (2022). Principles of Biomaterials Encapsulation Vol. 1. Woodhead Publishing Series in Biomaterials. https://doi.org/10.1016/B978-0-323-85947-9.09993-3

  3. Brlek, I., Ludaš, A., & Sutlović, A. (2021). Synthesis and spectrophotometric analysis of microcapsules containing immortelle essential oil. Molecules, 26(8), 2390. https://doi.org/ 10.3390/molecules26082390. PMCID: PMC8074605. PMID: 33924209.

  4. Choudhury, N., Meghwal, M., Das K. (2021). Review article: Microencapsulation, an overview on concepts, methods, properties, and applications in foods. Food Frontiers, 2(4), 426-442. https://doi.org/10.1002/fft2.94.

  5. Ditjen Farmalkes RI. (2017). Farmakope Herbal Indonesia Edisi II. Kemenkes RI.

  6. Ditjen Farmalkes. (2022). Farmakope Herbal Indonesia Edisi II: Suplemen I. Kemenkes RI.

  7. Han, X., Wang, L., Sun, Y., Liu, X., Liu, W., Du, Y., Li, L., & Sun, J. (2013). Preparation and evaluation of sustained-release diltiazem hydrochloride pellets. Asian Journal of Pharmaceutical Sciences, 8, 244-251.

  8. Hibrah, H., Ikhsandy, F., Yahya, A.K., & Rosalina, R. (2022). Variation of time and ethanol solvent concentration of kinetic maceration tannin extraction from aromatic Areca catechu. Jurnal Ilmu Teknik Kimia, 6(1), 9. https://doi.org/ 10.32493/jitk.v6i1.14180

  9. Janczura, M., Sip, S., & Cielecka-Piontek, J. (2022). The development of innovative dosage forms of the fixed-dose combination of active pharmaceutical ingredients. Pharmaceutics, 14(4), 834. https://doi.org/10.3390/ pharmaceutics14040834. PMID: 35456668; PMCID: PMC9025674.

  10. Jyothi, S.S., Seethadevi, A., Prabha, K.S., Muthuprasanna, P., & Pavitra, P. (2012). Microencapsulation: A Review. International Journal of Pharmacy and Biological Sciences, 3, 509-531.

  11. Kemenkes RI. (2020). Diltiazem hydrochloride extended-release capsules. In Kemenkes RI. Farmakope Indonesia Edisi 6. Kemenkes RI, p. 425.

  12. Kosasih, K., Sumaryono, W., Mudhakir, D., Supriyono, A., Christian, Y.E., & Debora, R. (2021). Effects of gelatin and glutaraldehyde concentrations on characteristics of Cantigi (Vaccinium varingiaefolium Miq.) extract loaded gelatin nanoparticles as antioxidant. Journal of Halal Product and Research, 4(1), 1-7.

  13. Kosasih, K., Sumaryono, W., Supriyono, A., & Mudhakir, D. (2020). Possible cytotoxic activity analysis of diethyl ether extract of Vaccinium varingiaefolium (Blume) Miq leaves by GC-MS method. Journal of Pharmaceutical Science and Research,12(6), 840-847.

  14. Kosasih, K., Sumaryono, W., Supriyono, A., & Mudhakir, D. (2022). (Cytotoxic effect of Cantigi [Vaccinium varingiaefolium (Blume) Miq.] extracts on T47D cells. AIP Conference Proceeding, 2563, 050014. https://doi.org/10.1063/5.0103147.

  15. Kosasih, K., Susanty, D., Asianski, I.P.H., & Maryanto, D.I. (2024). Formulation and characterization of antioxidant capsules containing Cantigi extract-loaded nanoparticles synthesized via nanoprecipitation method. Journal of Natural Product for Degenerative Diseases, 1(2), 79-85. https://doi.org/10.58511/jnpdd.vli2.6352.

  16. Kurek, M., Benaida-Debbache, N., Garofulić, I.E., Galić, K., Avallone, S., Voilley, A., & Waché, Y. (2022). Antioxidants and bioactive compounds in food: Critical review of issues and prospects. Antioxidants, 11(4), 742. https://doi.org/10.3390/antiox11040742.

  17. Kurniawan, R., & Rahmat, D. (2017). Mikroenkapsulasi controlled release lansoprazol dengan kombinasi hydroxy propyl methyl cellulose phthalate dan natrium alginat secara gelasi ionotropik. Indonesian Journal of Pharmaceutical Sciences, 14(1), 86-92. https://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/ 57/44

  18. Mariel, C-O., & Edith, P-A. (2022). The role of microencapsulation in food application. Molecules, 27(5), 1499. https://doi.org/10.3390/molecules27051499. PMCID: PMC8912024; PMID: 35268603

  19. Monagas, M., Brendler, T., Brinckmann, J., Dentali, S., Gafner, S., Giancaspro, G., Johnson, H., Kababick, J., Ma, C., Oketch-Rabah, H., Pais, P., Sarma, N., & Marles, R. (2022). Understanding plant to extract ratios in botanical extract. Frontiers in Pharmacology, 13, 981978. https://doi.org/10.3389/fphar.2022.981978.

  20. Murtaza, G. (2012). Ethylcellulose microparticles: a review. Acta Poloniae Pharmaceutica, 69(1), 11-22. PMID: 22574502

  21. Paulo, F., & Santos, L. (2017). Design of experiments for microencapsulation applications: A review. Materials Sciece Engineering C Materials for Biological Applications, 1(77), 1327-1340. https://doi.org/10.1016/ j.msec.2017.03.219.

  22. Pinheiro, V.A., Kaneko, T.M., Velasco, M.V.R., & Consiglieri, V.O. (2007). Development and in vitro evaluation of extended-release theophylline matrix capsules. Brazilian Journal of Pharmaceutical Sciences, 43(2), 253-261.

  23. Raj, R., Nizar, S., Bhattacharyya, C., & Savanur, MA. (2024). Advances in microencapsulation and nanoemulsion techniques of plant pigments: Improving stability, bioavailability, and bioactivity for application in the food industry. In: Mérillon JM, Ramawat KG, (eds). Plant Specialized Metabolites. Reference Series in Phytochemistry. Springer. https://doi.org/10.1007/978-3-031-30037-0_46-1.

  24. Šedbarė, R., Janulis, V., & Ramanauskiene, K.. (2023). Formulation and biopharmaceutical evaluation of capsules containing freeze-dried Cranberry fruit powder. Plants, 12(6), 1397. https://doi.org/ 10.3390/plants12061397. PMCID: PMC10057423. PMID: 36987086

  25. Singh, M.N., Hemant, K.S.Y., Ram, M., & Shivakumar, H.G. (2010). Microencapsulation: A promising technique for controlled drug delivery. Research in Pharmaceutical Sciences, 5(2), 65–77. PMID:21589795

  26. Song, X-C., Yu, Y-L., Yang, G-Y., Jiang, A-L., Ruan, Y-J., & Fan, S-H. (2022). One-step emulsification for controllable preparation of ethyl cellulose microcapsules and their sustained release performance. Colloids and Surface B, 216, 112560. https://doi.org/10.1016/j.colsurfb.2022. 112560

  27. Sulastri, E., Ibrahim, N., & Budiarti, S. (2019). Mikroenkapsulasi likopen dari buah tomat dengan metode penguapan pelarut (Microencapsulation of lycopene from tomato fruit by solvent evaporation method). Galenika Journal of Pharmacy,  5(1), 108-116. https://doi.org/10.22487/j24428744.2019. v5.i1.12406

  28. USP 2023 (United States Pharmacopeia 46 - NF 41): General Chapter, <921> Water Determination. webofpharma.com. https://doi.org/10.31003/USPNF_M99710_02_01

  29. USP 2023 (United States Pharmacopeia 46 - NF 41): General Chapter, <786> Particle Size Distribution Estimation by Analytical Sieving. webofpharma.com. https://doi.org/10.31003/ USPNF_ M99584_02_01

  30. USP 2023 (United States Pharmacopeia 46 - NF 41): General Chapters, <616> Bulk Density and Tapped Density of Powders. webofpharma.com. https://doi.org/10.31003/USPNF_ M99375_01_01

  31. USP 2023 (United States Pharmacopeia 46 - NF 41): General Chapter, <1174> Powder Flow. webofpharma.com. https://doi.org/10.31003/USPNF_M99885_01_01

  32. Yamauchi, M., Kitamura, Y., Nagano, H., Kawatsu, J., & Gotoh, H. (2024). DPPH measurements and structure-activity relationship studies on the antioxidant capacity of phenols. Antioxidants, 13(3), 309. https://doi.org/10.3390/antiox13030309

  33. Yan, C., & Kim, S-R. (2024). Microencapsulation for pharmaceutical applications: A review. ACS Applied Bio Materials, 7(2), 692–710. https://doi.org/10.1021/acsabm.3c00776

  34. Yasin, H., Al-Taani, B., & Salem, M.S. (2021). Preparation and characterization of ethylcellulose microspheres for sustained-release of pregabalin. Research in Pharmaceutical Sciences, 16(1), 1–15. https://doi. org/10.4103/1735-5362.305184. PMCID: PMC8074809. PMID: 33953770

  35. Yulyana, A., Winarno, H., & Kosasih, K. (2016). Karakterisasi ekstrak daun Cantigi (Vaccinium varingiaefolium Miq.). Jurnal Sains dan Kesehatan, 1(5), 276-283. https://doi.org/10.25026/jsk.v1i5.50

bottom of page