top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Engineering and Technology Quarterly Reviews

ISSN 2622-9374

Screen Shot 2018-08-15 at 7.28.21 PM.png
Screen Shot 2018-08-15 at 7.28.06 PM.png
Screen Shot 2018-08-15 at 7.28.12 PM.png
Screen Shot 2018-08-15 at 7.28.27 PM.png
crossref
doi
open access

Published: 30 January 2021

Uniformly Valid First Approximation Shell Theory of Hybrid Anisotropic Materials

Samuel W Chung, Hyun-ho Ju

University of Utah (USA), Dong Guk University (South Korea)

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.5281/zenodo.4481067

Pages: 1-9

Keywords: Shell Theory, Hybrid Anistropic Materials

Abstract

The theories in this article implies unique physical characteristics and formulated the governing equations. A uniformly valid shell theory which includes all the terms present in each of the asymptotic shell theories. The first approximation theories derived in this article represent the simplest possible shell theories for the corresponding length scales considered. Although twenty-one elastic coefficients are present in the original formulation of the problem, only six are appear in the first approximation theories.

References

  1. LOVE, A. E. H., "A treatise on the mathematical theory of elasticity", Dover Edition, New York.

  2. REISSNER, E., "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech. 12, Nos.A69-A77,(1945).

  3. GOLDENVEISER, A. L., "Theory of elastic thin shells", Pergamon

  4. REISSNER, E., "On some problems in shell theory", Proc. 1st Symposium on Naval Structural Mechanics (Stanford University), (1958).

  5. REISSNER, E. and STAVSKY, Y., "Bending and stretching of certain types of heterogeneous aelotropic elastic plates", J. Appl. Mech., Paper No. 61-APM-21,(1961).

  6. DONG, R. G. and DONG, S. B., "Analysis of slightly anisotropic shells", AIAA Journal, 1, No.11, November,(1963).

  7. WIDERA, 0. E. and CHUNG, S. W., "A theory for non-homogeneous anisotropic cylindrical shells", J. COMPOSITE MATERIALS, 6, January, (1972).

  8. GOLDENVEISER, A. L., "Methods for justifying and refining the theory of shells", P.M.M. 32, 684 (1968).

  9. JOHNSON, M. W. and REISSNER, E., "On the foundations of the theory thin elastic shells", J. Math. Phys. 37, 371 (1959).

  10. REISS, E. L., "A theory for the small rotationally symmetric deform¬ations of cylindrical shells". Communications on Pure and Applied Mathematics XIII, 531 (1960).

  11. WILCOX, C. H., "Asymptotic solutions of differential equations and their applications", John-Wiley and.Sons, Inc..

  12. VAN DYKE, M., "Pertubation methods in fluid mechanics", Academic Press, (1964).

  13. DYM, C. L. and HOFF, N. J., "Pertubation-solutions for the buckling problem of axially compressed thin cylindrical shells", AFO SR-66--1755, SUDAAR No.282, Stanford University.

  14. BERT, C. W., "Structural theory for laminated anisotropic elastic shells", J. COMPOSITE MATERIALS 1 , 414 (1967).

  15. VLASOV, V. Z., "General theory of shells and its applications in engineering", NASA TT F-99, National Tech. Information Service.

  16. CHUNG, S.W., “A Comparison of Membrane Shell Theories of Hybrid Anisotropic Materials”, European Journal of Engineering and Technology, Volume 4, No.5,2016 http://www.idpublications.org/ejet-vol-4-no-5-2016/

  17. Chung, S.W., Hong, S.G. and Ju, G.S.,

  18. “Details of Semi-Membrane Shell Theory of Hybrid Anisotropic Materials” International Journal of Composite Materials 2018.8(3):47-56,

  19. Chung, S.W., Hong, S.G., Ju, G.S.

  20. “Pure Membrane, Pseudo Membrane, and Semi Membrane Shell Theories of Hybrid Anisotropic Materials”, Journal of Material Science and Engineering A 8 (5-6) (2018) 121-135,

  21. Chung, S.W., Hong, S.G., Ju, G.S., “Semi-Membrane and Effective Length Theory of hybrid Anisotropic Materials“,

  22. International Journal of Composite Materials. volume 7 (3), 2017: Contact Us: editor@sapub.org , ID:110900221

  23. Chung, S. W.1, Hong S. G.2, Ju G. S.3,

  24. “Applications of Pure Membrane, Pseudo Membrane, and Semi Membrane Shell Theories of Hybrid Anisotropic Materials”, International Journal of Composite Materials  p-ISSN: 2166-479X e-ISSN: 2166-4919, 2018; 8(4): 73-90 doi:10.5923/j.cmaterials.20180804.01

  25. Chung S. W.1 , Hong, S. G.2, Ju G. S.3,, “A Spherical Shell Theory of Hybrid Anisotropic Materials”. International Journal of Composite Materials p-ISSN: 2166-479X e-ISSN: 2166-4919 2018; 8(4): 97-104, ID:110900262, doi:10.5923/j.cmaterials.20180804.03

bottom of page