top of page
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute
Asian Institute of Research, Journal Publication, Journal Academics, Education Journal, Asian Institute

Engineering and Technology Quarterly Reviews

ISSN 2622-9374

Screen Shot 2018-08-15 at 7.28.21 PM.png
Screen Shot 2018-08-15 at 7.28.06 PM.png
Screen Shot 2018-08-15 at 7.28.12 PM.png
Screen Shot 2018-08-15 at 7.28.27 PM.png
crossref
doi
open access

Published: 26 May 2020

Enhancing Physical, Mechanical and Thermal Properties of Rubberized Concrete

Raja Bilal Nasar Khan, Anwar Khitab

Mirpur University of Science and Technology, Pakistan

journal of social and political sciences
pdf download

Download Full-Text Pdf

doi

10.5281/zenodo.3852541

Pages: 33-45

Keywords: Concrete, Waste Rubber Tires, Thermal Conductivity, Density, Strength, Porosity

Abstract

This research aims to develop a low density concrete, characterized by high porosity and reduced thermal conductivity with slight to no compromise over strength, employing scrapped waste tires. Although, literature on the topic is available that addresses benefits and drawbacks of rubberized concrete, this experimental work was formulated to suggest an optimum dose of crumb rubber that imparts sufficient strength and workability in addition to insulation and low weight. Four types of specimens were cost and tested, containing 0, 5, 10 and 15% crumb rubber as partial replacement of sand in ordinary concrete, using ASTM standards. Specially constructed heat transfer measurement device was used to find out the thermal conductivity of the specimens. Scanning electron microscopy was carried out to examine the micro-structure of rubberized concrete. Results reveal that thermal conductivity and density lower by 30% and 15% respectively and porosity increases by 34% at 15% partial replacement of sand by rubber. Higher concentration of voids along the interface were observed at 15% replacement indicating poor bonding and a weaker ITZ, leading to reduced strength. Based on the results, 5% optimum dosage is recommended, which enhances porosity by 5%, compressive strength by 5.5%, and reduces slump by 16%, thermal conductivity by 16% and density by 2% respectively.

References

  1. A.Sofi. (2018). Effect of waste tyre rubber on mechanical and durability properties of concrete – A review. Ain Shams Engineering Journal, 9(4), 2691–2700.

  2. ABDOLLAHZADEH, A., MASOUDNIA, R., & AGHABABAEI, S. (2011). PREDICT STRENGTH OF RUBBERIZED CONCRETE USING ATRIFICIAL NEURAL NETWORK. WSEAS TRANSACTIONS on COMPUTERS, 10(2), 31–40.

  3. Ahmed, S., Khitab, A., Mehmood, K., & Tayyab, S. (2020). Green non-load bearing concrete blocks incorporating industrial wastes. SN Applied Sciences, 2(2), 266. https://doi.org/10.1007/s42452-020-2043-6

  4. Asadi, I., Shafigh, P., Abu Hassan, Z. F. Bin, & Mahyuddin, N. B. (2018). Thermal conductivity of concrete – A review. Journal of Building Engineering, 20, 81–93. https://doi.org/10.1016/j.jobe.2018.07.002

  5. Aslani, F., & Khan, M. (2019). Properties of High-Performance Self-Compacting Rubberized Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 31(5), 04019040. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002672

  6. ASTM. (2013). ASTM C31: Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. Annual Book of ASTM Standards. https://doi.org/10.1520/C0192

  7. ASTM C177-13. (2013). Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus. West Conshohocken, PA.

  8. ASTM C192 /C192M. (2019). Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken, PA.

  9. Bakri, A. M. M. Al, Fadli, S. A. S. N., Bakar, M. D. A., & Leong, K. W. (2007). COMPARISON OF RUBBER AS AGGREGATE AND RUBBER AS FILLER IN CONCRETE. In 1st International Conference On Sustainable Materials 2007_ICoMS 2007. Penang, Malaysia.

  10. Benazzouk, A., Douzane, O., Langlet, T., Mezreb, K., Roucoult, J. M., & Quéneudec, M. (2007). Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement and Concrete Composites, 29(10), 732–740. https://doi.org/10.1016/j.cemconcomp.2007.07.001

  11. Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B., & Quéneudec, M. (2008). Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling. Construction and Building Materials, 22(4), 573–579. https://doi.org/10.1016/j.conbuildmat.2006.11.011

  12. Bolden. (2013). UTILIZATION OF RECYCLED AND WASTE MATERIALS IN VARIOUS CONSTRUCTION APPLICATIONS. American Journal of Environmental Sciences, 9(1), 14–24. https://doi.org/10.3844/ajessp.2013.14.24

  13. Elchalakani, M. (2015). High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers. Structures, 1, 20–38. https://doi.org/10.1016/j.istruc.2014.06.001

  14. Ghedan, R. H., & Hamza, D. M. (2011). Effect Of Rubber Treatment On Compressive Strength And Thermal Conductivity Of Modified Rubberized Concrete. Journal Of Engineering And Development, 15(4), 21–29.

  15. Güneyisi, E. (2010). Fresh properties of self-compacting rubberized concrete incorporated with fly ash. Materials and Structures, 43(8), 1037–1048. https://doi.org/10.1617/s11527-009-9564-1

  16. Hassan Riaz, M., Khitab, A., & Ahmed, S. (2019). Author’s Accepted Manuscript Evaluation of Sustainable Clay Bricks Incorporating Brick Kiln Dust Evaluation of Sustainable Clay Bricks Incorporating Brick Kiln Dust. Journal of Building Engineering. https://doi.org/10.1016/j.jobe.2019.02.017

  17. Herrera-Sosa, E. S., Martínez-Barrera, G., Barrera-Díaz, C., Cruz-Zaragoza, E., & Ureña-Núñez, F. (2015). Recovery and Modification of Waste Tire Particles and Their Use as Reinforcements of Concrete. International Journal of Polymer Science, 2015, 1–8. https://doi.org/10.1155/2015/234690

  18. Jalil, A., Khitab, A., Ishtiaq, H., Bukhari, S. H., Arshad, M. T., & Anwar, W. (2019). Evaluation of Steel Industrial Slag as Partial Replacement of Cement in Concrete. Civil Engineering Journal, 5(1), 181–190. https://doi.org/10.28991/cej-2019-03091236

  19. Kaloush, K., Way, G. B., & Zhu, H. (2005). Properties of crumb rubber concrete. Transportation Research Record: Journal of the Transportation Research Board, 1914, 8–14.

  20. Khalid, A. R., & Hameed, M. H. (2015). RUBBERIZED CONCRETE (RUBCRETE) A NOVEST APPROCH. In 1st International Multi-Disciplinary Conference. Gujarat, Pakistan.

  21. Khatib, Z. K., & Bayomy, F. M. (1999). Rubberized Portland Cement Concrete. Journal of Materials in Civil Engineering, 11(3), 206–213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)

  22. Khitab, A. (2012). Materials of Construction. Allied Books.

  23. Khitab, A., Lorente, S., & Ollivier, J. P. (2005). Predictive model for chloride penetration through concrete. Magazine of Concrete Research, 57(9). https://doi.org/10.1680/macr.2005.57.9.511

  24. Khitab, Anwar. (2005). Modélisation des transferts ioniques dans les milieux poreux saturés: application à la pénétration des chlorures à travers les matériaux cimentaires. Institut National des Science Appliquées de Toulouse. Retrieved from https://core.ac.uk/download/pdf/35285113.pdf

  25. Khitab, Anwar, & Anwar, W. (2016). Classical Building Materials. In Advanced Research on Nanotechnology for Civil Engineering Applications (pp. 1–27).

  26. Li, Y., Dong, W., Li, H., & Li, Z. (2015). Method of Vacuum Water Absorption to Determine the Porosity of Hardened Concrete. International Journal of Structural and Civil Engineering Research. https://doi.org/10.18178/ijscer.4.3.282-286

  27. Marie, I. (2017). Thermal conductivity of hybrid recycled aggregate – Rubberized concrete. Construction and Building Materials, 133, 516–524. https://doi.org/10.1016/j.conbuildmat.2016.12.113

  28. Munir, M. J., Kazmi, S. M. S., & Wu, Y.-F. (2017). Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: A sustainable approach. Construction and Building Materials, 154, 590–599. https://doi.org/10.1016/j.conbuildmat.2017.08.002

  29. Munir, M. J., Kazmi, S. M. S., Wu, Y.-F., & Patnaikuni, I. (2018). A Literature Review on Alkali Silica Reactivity of Concrete. International Journal of Strategic Engineering, 1(2), 43–62. https://doi.org/10.4018/ijose.2018070104

  30. Oprişan, G., Enţuc, I.-S., Mihai, P., Toma, I.-O., Ţăranu, N., Budescu, M., & Munteanu, V. (2019). Behaviour of Rubberized Concrete Short Columns Confined by Aramid Fibre Reinforced Polymer Jackets Subjected to Compression. Advances in Civil Engineering, 2019, 1–11. https://doi.org/10.1155/2019/1360620

  31. Riaz, M. H., Khitab, A., Ahmad, S., Anwar, W., & Arshad, M. T. (2019). Use of ceramic waste powder for manufacturing durable and eco-friendly bricks. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-019-00205-2

  32. Sohrabi, M. R., & karbalaie, M. (2011). An experimental study on compressive strength of concrete containing crumb rubber. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 11(3), 24.

  33. Topçu, İ. B., & Bilir, T. (2009). Experimental investigation of some fresh and hardened properties of rubberized self-compacting concrete. Materials & Design, 30(8), 3056–3065. https://doi.org/10.1016/j.matdes.2008.12.011

  34. Toutanji, H. A. (1996). The use of rubber tire particles in concrete to replace mineral aggregates. Cement and Concrete Composites, 18(2), 135–139. https://doi.org/10.1016/0958-9465(95)00010-0

  35. Xue, J., & Shinozuka, M. (2013). Rubberized concrete: A green structural material with enhanced energy-dissipation capability. Construction and Building Materials, 42, 196–204. https://doi.org/10.1016/j.conbuildmat.2013.01.005

  36. Youssf, O., ElGawady, M., Mills, J. E., & Ma, X. (2014). PREDICTION OF CRUMB RUBBER CONCRETE STRENGTH. In 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23). Byron Bay, Australia.

bottom of page