Education Quarterly Reviews
ISSN 2621-5799
Published: 14 December 2020
The Accuracy and Shortcomings of Google Translate Translating English Sentences to Indonesian
Adi Sutrisno
Universitas Gadjah Mada, Indonesia
Download Full-Text Pdf
10.31014/aior.1993.03.04.161
Pages: 555-568
Keywords: Google Translate, Memsource, Statistical Machine Translation, English-Indonesian Translation, Sentence-Pair Matrix
Abstract
Google Translate is a free and practical online translation service that allows millions of people around the globe to translate words, phrases, sentences, and paragraphs into an intended target language. However, in 2015, some Google Translate users in Indonesia, filed complaints, asserting that the machine was often inaccurate, speculating that it could only translate languages at the micro-level of words and phrases, rather than complete sentences or paragraphs. This research works to examine the accuracy as well as the shortcomings of Google Translate, in the context of English to Indonesian translations, in order to critically engage the complaints made by Google users. For the purpose of this study, 80 English sentences were translated using Google Translate and assessed for accuracy using a table adapted from Memsource criteria. Both the original sentences and their translated versions were analyzed using a sentence pair matrix to determine the machine’s failings and areas for improvement. The results challenged those initial speculations which suggested Google Translate is only effective with words and phrases. On the contrary, Memsource proved to be a useful tool in demonstrating a reasonable level of accuracy, accurately translating 60.37% of Indonesian-English sentences and vice versa.
References
Aitken and Balan. (2011). ‘An Analysis of Google Translate Accuracy’. Translation Journal. Retrieved from https://scholar.google.com/citations?
Barreiro, et al. (2014). Linguistic Evaluation of Support Verb Construction by OpenLogos and Google Translate.
Retrieved from http://www.cs.cmu.edu/~lingwang/papers/lrec2014-2.pdf.
Butler. (2010). Machine Versus Human: Will Google Translate Replace Professional Translators?. Retrieved from http://mason.gmu.edu/~fbutler2/IT%20103-005%20 Research% 20 Paper %20 Butler.pdf
Farlin, S. (2015). Semantics analysis in the translation of Indonesian abstract into English using Google Translate. Retrieved from https://repository.usd.ac.id/3782/1/081214124.pdf.
Graesser, Li, and Chai. (2014). ‘Comparison of Google Translate with Human Translation’. Proceedings of the Twenty Seventh International Florida Artificial Intelligence Research Society Conference. Retrieved from
https://pdfs.semanticscholar.org/1187/d4bc0c83804c15cd6cc1b43670d27f5fe9b6.pdf
Grajales. (2015). Statistics Behind Goodle Translate. Retrieved from
www.statisticviews.com/details/feature/806.081/The-statistics-behind-Google-Translate.html.
Hardin & Picot. (1990) ‘Unchangement de point de vue qui permet d’exprimer de manière différente une même
phénomène’. Translate: Initiation à la pratique de la traduction, Bordas, Paris: Aubin Imprimeur, p. 21
Koehn, P. Och, F.J. and Marcu, D. (2003) ‘Statistical Phrase Based Translation’. In Proceedings of
the 2003 conference of the North American Chapter of the Association for Computational Linguistics on
Human Technology, Vol 1, 48-54. Edmonton, Canada: Association for computational Linguistics.
Liputan 6. (2018). Alasan Orang Indonesia Doyan Pakai Google Translate. Retrieved from
Memsource (2016). Data: Machine and Professional Human translations Identical in 5-20% cases. Retrieved from https://www.memsource.com/blog/2016/06/28/machine-vs-human-translation
Napitupulu. (2017). “Analyzing Indonesian-English Abstracts Translation in Views of Translation Errors by Google Translate”. International Journal of English Language and Linguistics Research Vol.5, No.2, pp.15-23
Ney, H. (1995). ‘On the Probabilistic Interpretation of Neural Network Classifiers and Discriminative Training
Criteria’. IEEE Transactions on Pattern analysis and Machine Intelligence 17 (2); 107-119
Okpor. (2015). Machine Translation Approaches: Issues and Challenges. IJCSI International Journal of Computer Science Issues. Vol 11. Issue 5. No 2. September 2014
Osborne, et al. (2006). ‘Improved statistical machine translation using paraphrases’, Proceedings of the main
conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, p.17-24, June 04-09
Osborne. (2010). Metrics for MT Evaluation: Evaluating Reordering”. DOI: 10.1007/s10590-009-9066-5
Papineni, et al. (2002). ‘BLEU: A Method for Automatic Evaluation of Machine Translation’. In Proceedings of the 40th Annual Meeting on association for Computational Linguistics, 311-318, Philadelphia.
Patil and Davies. (2014). Use of Translate in Medical Communication: Evaluation of Accuracy. Retrieved from
Sneddon, J. (1996). Indonesian: A Comprehensive Grammar. London : Routledge.